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Layered crystalline materials like KsMe(CN)6 with Me = Cr, Mn, Fe, Co may 
often exist in various polytypic forms, due to a variety of choices of layer 
stacking modes. For cases where the interlayer constellations can be limited to 
only two energetically almost equivalent ways, the buildup of the crystal may be 
described by a spin-l/2 lsing-like model. For the system presently being studied 
one can rationalize the layer stacking to a four-valued choice (i.e., a ID 4-state 
Potts case), or use an Ising-like two-sublattice model. Previous diffraction 
studies of KsMe(CN)~ indicated that two long-range ordered structures 
prevailed, an orthohombic one named MDOt ,  with one double layer per repeti- 
tion unit, and a monoclinic one, MDO2, with two double-layer units. Our 
studies reveal a more complex situation: The Fe material is for the most part of 
the MDO 2 type. But in addition, in some crystal samples, a hitherto unobserved 
phase also appears, with six double-layer repetition units, in fact a hybrid of 
MDO~ and MDO, .  The Co material is for the most part of the MDO2 type, 
but contains in addition a considerable contribution of stacking disorder, 
as evidenced by the presence of diffuse X-ray scattering lines. The lines do, 
however, contain distinct maxima, indicating the presence of several layer 
stacking modes with preference of two, three, four, five, and seven double-layer 
correlations. The findings can be qualitatively discussed in terms of the ANNNI 
model. 

KEY WORDS: Polytypism; Ising model; Order-disorder; X-ray scattering. 

1. I N T R O D U C T I O N  

M a n y  l a y e r e d  m a t e r i a l s  a r e  k n o w n  to  e x h i b i t  w h a t  is k n o w n  as  polytypism.  

SiC is o f t e n  t a k e n  as  a p r o t o t y p e ,  o f  w h i c h  a b o u t  50 d i f f e r e n t  va r i e t i e s  h a v e  
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been identified, but several other groups of materials, such as CdI2, TiS2, 
clays, micas, and other minerals, exhibit polytypismJ 1~ 

The basic origin of polytypism is simple. Polytypic materials may be 
viewed as built up of rigid (molecular) layers stacked on top of each other, 
with possibilities of at least two energetically similar interlayer constella- 
tions. An infinite number of stacking sequences is thus possible, giving rise 
to what may be termed natural superlattices when longrange ordered. For 
SiC, structural variants with more than 100 layers per repetition unit have 
been reported (one claim of a structure with 594 layer units). 

In most cases the energetic differences among various superstructure 
types are small, and their formation is very sensitive to the small details of 
the crystal growth conditions (temperature gradients, reactor vessel walls, 
presence of impurity ions, etc.). Often one finds several polytypes in the 
same crystal batch. Since the stacking sequences are formed during the 
growth process, it is in most cases not possible to alter a given crystal, for 
instance, by heat treatment. 

Crystal polytypism has attracted both experimentalists and theorists. 
From the theory point of view the field appears appealing because model- 
ing of growth mechanism by Ising-like models seems natural. In particular 
Price, Yeomans, and coworkers t2-41 have devoted considerable effort to 
this end, by application of the axial next-nearest-neighbor Ising (ANNNI) 
model. It was realized at an early stage that interaction to nearest 
neighbors alone could not account for the great variety of types. On the 
contrary, the main result of the studies of the ANNNI model is that the 
addition of a second, competing interaction opens up a great wealth of 
possible stacking sequences. 

In the present work we shall show from X-ray diffraction that the 
system K3Me(CN)6 in fact shows such richness of polytypism. 

It is a pleasure for us to dedicate this work to the commemoration of 
Lars Onsager, whose famous solution of the 2D Ising model we were able 
to give the first experimental realization of 20 years ago. tS~ 

2. LAYER STRUCTURE OF K3Me(CN)8 

The crystal structure of the series with M e =  Cr, Mn, Fe, Co was 
studied in G6teborg by Vannerberg and coworkers, t6-8~ The main feature 
is that the Me(CN)63- octahedra are bound via fairly strong K § bridges in 
the crystallographic a and b directions to form quite rigid (001) planes. 
Each plane is electrically approximately neutral, so that interlayer forces 
are mostly of van der Waals type [(001) is a cleavage plane]. 

From the X-ray diffraction pattern the G6teborg group found that the 
materials could be classified into two basic long-range structure types 
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Fig,  1. I l l u s t r a t i o n  o f  l a y e r  s t a c k i n g  m o d e s  M D O t  a n d  M D O  2. O r t h o r h o m b i c  un i t  cells a r e  

i n d i c a t e d  b y  d a s h e d  l ines ,  the  p r i m i t i v e  cell fo r  M D O 2  is i n d i c a t e d  b y  d o t s .  

called MDO~ and MDO2 ( M D O = " m a x i m u m  degree of order"(91). In 
MDO~ the third layer is placed just at the same lateral position as the first 
layer (orthohombic structure), whereas in MDO,  the third layer is shifted 
along a by half a lattice vector (monoclinic lattice), leading to a unit cell 
doubling along the layer stacking direction in this case (Fig. 1). 

The presence of a diffuse scattering component in certain regions of 
hkl (for h = odd) was interpreted as due to the presence of a third phase, 
which would be stacking disordered. 

The structure is such that nearest neighbor layers always are shifted 
+a/4  relative to each other, the two ways being energetically equivalent. 
This fact would invite an Ising model treatment. 

One must, however, take into account two separate sublattices, one 
for even-numbered layers, say, with (1/4+ 1/4)a (sublattice 1) and one for 
odd-numbered layers at + 1/4a (sublattice 2). This leads to four states per 
double layer, a situation which could be approached by a 1D four-state 
Potts model. (l~ In Section 3 we describe the diffraction pattern in terms of 
a "two-sublattice Ising-type" picture. 
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3. T H E  A N N N I  M O D E L  

The ANNNI model was introduced in 1981 by Elliott I1~ to describe 
incommensurate magnetic phases in rare earths. It is characterized by the 
competition between nearest-neighbor and next-nearest-neighbor interac- 
tions, which may lead to complicated phase diagrams. 

The model is also applied frequently to nonmagnetic statistical 
mechanical problems, like absorbed monolayers, intercalation compounds, 
and charge density waves (see Bak ~1~ for a review), and to polytypism in 
mineralsJ >4~ For the latter case one identifies structural units, like layers, 
whose position or orientation may take one of two choices, denoted by a 
pseudo spin variable S,, = __ 1. The Hamiltonian is very simple, 

H = Ho + H.n + H,~n,, (1) 

where Ho is the noninteracting units contribution, and 

Hnn =--J' E S,,S,c (2) 
nt~' 

runs over the nearest-neighboring layers, and 

H . . .  = - g 2  Y'. S,,S,,., (3) 
#lt~" 

runs over next-nearest neighbors. 
For our case the pseudospin is taken to denote the lateral position x,, 

along one of the crystallographic directions (orthorhombic a axis). Layers 
are denoted by n, and are stacked along the c axis. Nearest-neighbor layers 
are always shifted by __+ 1/4a relative to each other, ~6-8~ so that there are 
four possible sites per layer. Although that might invite a description by a 
four-state Potts model, ~2~ one may remain in the simpler Ising model 
regime by introducing a two-sublattice description: We denote even- 
numbered layers (n = 2p) by sublattice 1, and assign the pseudospin variable 
S,,= + t  to it, corresponding to x , ,=0  and I/2, respectively, and odd- 
numbered layers (17= 2p+ 1) by sublattice 2, with pseudospin variables 
T,, = + 1, corresponding to x,, = - 1 / 4  and + 1/4, respectively. 

The nearest-neighboring Hamiltonian contribution may now be 
written 

Hnn = - J l  Z S2p T2p+ 1 ( 4 )  
p 



Stacking in Layered K3Me(CN)6 Compounds 139 

whereas the next-nearest-neighbor term will read 

Hnnn ---- --J2 Z (SzpS2p+ 2 Off Tzp_ l T2p+ 1) (5) 
P 

The coupling constants J~ and J2 are phenomenological parameters, 
originating from local elastic layer distortions. {2~ 

The solution of the ANNNI model Hamiltonian has been discussed in 
several contexts by various authorsJt ' l  The most relevant solution for our 
purpose is that given by Price and Yeomans. .2~) Explicit solution for our 
two-sublattice model has not been worked out. However, it is well known 
that for magnetic systems multiple-sublattice cases behave qualitatively 
similar to one-sublattice ones, so we expect that the qualitative picture of 
the Price-Yeoman model will apply also for our case. 

In Section4 the X-ray scattering is discussed in terms of the 
pseudospin model. 

4. X -RAY S C A T T E R I N G  

In the following we shall use the orthorhombic unit cell of the MDOI 
phase as our indexing reference. Let the structure factor of each individual 
layer be 

FL = FL (hkl) (6) 

One should keep in mind that each layer is assumed to be fully ordered in 
the ab plane, so that FL(hkl) contains already a sharpness in the two 
indices h and k, such that only integer values of h and k are allowed. 

The total scattering amplitude is obtained by a sum over all layers n 
(from 0 to N -  1), 

F~ot (Q)=  FL ~ e2~i"he 2~"1/21"" 
t~ 

=FL ~ e2~i"he rut'' (7) 
11 

where x,, varies from layer to layer according to the actual stacking 
sequence. 

The pseudospin variables S,, and T,, of Section 3 may now be intro- 
duced, giving 

Ftot(Q) = FL ~ { [�89 + S2p ) + �89 -- S2p) e 'Q''/2] e iQ'cp (8) 
P 

+ [�89 + T2p+I ) + �89 -- T2p+ 1) ei~ e-iQ'a/4eiQ'c'(P+ 1/2)} 
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which can be developed into 

Ftot(Q) = EL [cos(Q �9 a/4). (e iO" ,/4 + eiO .c/2) ~. eiQ .cp 
I._ p 

- i  sin(Q �9 a/4) ~ (eiQa/4s2p+eiQ'e/2T2p+l)eiQ'eP 1 (9) 
P 

Q is the scattering vector. In terms of reciprocal lattice vectors a*, b*, c* 
one may write 

Q = 2n(ha* + kb* + le*) (10) 

Since Q'a/4=�89 the second term of (9) vanishes for even index 
h(h = 2m), giving sharp "family reflections ''(6-81 for that case, because the 
p-sum requires /=integer.  The prefactor requires m + / = e v e n  for the 
family reflections. 

For odd index h (h = 2m + 1 ), only the second term survives. Informa- 
tion on the layer configuration (S and T) can be deduced from this type 
of scattering. We calculate the intensity, and take expectation values ( . )  
(ensemble averages) for pseudospin correlation functions, giving for the 
intensity 

I(2m + 1, k, l) = Ftot(Q) F*t(Q)  

N - - I  

= FL F*.  ~ [ (S2p S2p, ) + ( Tzp + t Tap' + 1 ) 
p . p ' = O  

+ ( -- 1) m i((S2p T2:,+I ) e - '='-  ($2:, T2p+, ) e=i')] 

X e (2ai l(p - p" 1) ( 11 ) 

In this formula the index l is a continuous variable unless the layers are 
long-range ordered. 

For MDOI,  S2p = 1 and T2p + ~ = 1, giving rise to Bragg scattering for 
all l = integer. 

For M D O >  S2p= 1, Sxp+2= - 1  and T2p+l = 1, T2p+3 = - 1 ,  giving 
rise to scattering only for l= half-integer. 

Other ordered stacking models may be introduced in a similar way. 
For completely statistical disorder, on the other hand, only self- 

correlations survive: p =p ' ,  for which ($2, .  Sxp. 5 = 1, giving 

Idirrusc = N.  FL F* 

which is continuous in 1 (diffuse line along/) .  
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For correlations to nearest-neighboring planes (S2pT2p+l) survives 
also, giving a sin(n/)-type modulation of the diffuse line. 

More complicated correlation functions may be envisaged, such as a 
Markov chain growth model used in a previous study. ~31 

5. OBSERVATIONS 

We have previously studied the diffuse scattering from Di-aqua-bis- 
Salisylato-Copper(II) (DSC), el31 which showed no stacking long-range 
order, but very pronounced short-range correlation, as determined from 
modulated diffuse streaks. In that case the data were interpreted in terms 
of a Markov-chain growth mechanism to second neighbor, equivalent to a 
second-neighbor Ising model.l14) 

Two compounds in the K3Me(CN)6 series were recently rein- 
vestigated, namely the Fe and Co compounds. 

5.1. K3Fe(CN)6 

Two single-crystal species of the Fe compound were studied. In agree- 
ment with earlier work, 17) the MDO2 structure dominates, showing sharp 
Bragg peaks for h = 2m + 1 with l = half-integer, as shown in Fig. 2a. No 
diffuse scattering component was observed, indicating absence of disorder. 
However, whereas one specimen showed only l = half-integer scattering, the 
second specimen showed additional Bragg peaks at l =  1/6 and 5/6 as 
shown in Fig. 2b. In fact the reflections indicate not only a sixfold enlarge- 
ment of the unit cell relative to MDOt ,  but it is also of a single domain 
type ( l=  1/6 and 5/6, not - 1 / 6  and -5 /6) .  A long-range order as indicated 
in Fig. 3, would account for this observation. Interestingly, it is a hybrid of 
MDOI and MDO2. 

5.2. K3Co(CN)e 

For this compound Vannerberg ~7~ reported MDO2 structure with 
appreciable diffuse scattering in addition. 

We have investigated one crystal specimen only of this material, and 
in fact Vannerberg's findings were confirmed. However, the "diffuse" lines, 
at first glance seemingly randomly fluctuating, turn out to be not all only 
diffuse, but alsowell structured. 

In Fig. 4 we point out at least four different periods centered around 
l =  1/2, namely 1/3, 1/4, 2/5, and 2/7. Thus it seems that in the Co com- 
pound several phases are simultaneously present. 

822/78/I-2-10 
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(b) 
Fig. 2. Diffraction pattern for/-scans (along layer normal) for h = I (odd) for two samples 
of K3 Fe(CN)6: (a)Crystal no. 2, showing half index/-peaks (k = 1), (b)crystal no. 1, showing 
additional peaks at l =  1/6 and 5/6 Ik = 3). 
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Fig. 3. A possible stacking sequence (MDO6) to account for additional peaks in Fig. 2b. 
The sixfold enlarged unit cell is shown by dashed lines, the primitive cell by dots. 

6. D ISCUSSIONS 

In Fig. 5 we show a phase diagram by Price and Yeoman for the 
A N N N I  model, t'-J valid at low temperatures within the mean field 
approximation. 
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Fig. 4. Diffraction pattern for /-scan for h = I (odd) for a sample of K3Co(CN)  6. Referred 
to the / =  1/2 peak, the "satelite" peaks may be indexed by q = 1/4, 1/3, 2/7, and 2/5. The 
background level is indicated by a dashed line, showing some diffuse scattering contribution 
at all / .  
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Fig. 5. 

J2 
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Phases predicted for the ANNNI model in the parameter space of the two competing 
interactions Jl and J2 at low temperatures (figure reproduced from ref. 2). 

Several phases are predicted in the coupling parameter space of J~ 
(first neighbors) and J2 (second neighbors). Of particular interest is the 
occurrence of an enless number for complicated phases ("devil's stair- 
case ''~11) surrounding the " ( 2 ) "  phase. (The notation ( n m  . . .  ) means n 
up spins followed by m down spins, etc.; for instance, (12 2) means 

T~TT~TT&~). 
For our case the interlayer coupling strengths Jl and J2 are 

phenomenological, effective parameters originating from local elastic 
layer distortions. Thus they may vary considerably with the metal 
atom Me, since the metal affects the lattice geometry j6 8~ This 
could explain the occurrence of MDOj  (which corresponds to ( 1 ) )  for 
the Cr and Mn compounds and of M D O 2 ( ( 2 ) )  for the Fe and Co 
compounds. 

To understand the occurrence of several phases of the same material, 
one has to realize that the stacking sequence in the crystal is detemined by 
the layer-by-layer growth at the crystal-to-solution interface. The growth 
conditions, like local gradients, convection, and substrate walls, may vary 
sufficiently in the growth beaker to affect the effective J~ and J2- Thus even 
very small variations near the multiphase boundary may promote one or 
the other phase to grow. For the Fe compound we move from the ( 2 )  
regime into one of the more complicated ones. For the Co compound we 
see the presence of several long-period phases in addition to the ( 2 )  phase. 
More detailed studies, also including the Mn compound, will be performed, 
and more detailed quantitiative analyses undertaken to fit the models to 
the observed diffraction diagrams. 
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